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Dirac magnetic monopole and the Aharonov-Bohm solenoid in 
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BN19QH, UK 

Received 31 March 1989 

Abstract. We consider the Poincare (or  multipolar) gauge with finite and infinite reference 
point in connection with singularities of the Aharonov-Bohm solenoid and Dirac magnetic 
monopole type. Families of paths on which the Poincari gauge potentials are defined may 
give rise to ’shadow‘ surfaces or regions on which the Poincari gauge potentials are singular. 
These singularities may be avoided by changing the family of paths to another family 
(based on the same reference point) and this is equivalent to changing the gauge. We 
consider the Dirac magnetic monopole using the Poincare gauge with a family of parallel 
straight paths from reference points situated at (0, 0, 0, IS), producing the ‘overlapping’ 
potentials for the monopole. A method is given for calculating the Poincari gauge potentials 
on the shadow surface arising from a singularity, and this is illustrated by considering the 
solenoid problem in which the solenoid is given a finite radius ( E ) ,  and it is shown that 
the shadow surface in this case contains singularities of the Dirac delta function type. 

1. Introduction 

In quantum mechanics and  in field theory the gauge-invariant replacement + - e4, 
p^+ i - e! (or the minimal-coupling substitution d p  + a” + (ie/  hc)AP where p*” = 
i h 8  = ( E /  c, i )  and A* = (4 ,  C A ) ) ,  describes the interaction with the electromagnetic 
field of a charge field (for example, the charged Dirac or  Klein-Gordon fields). The 
total Lagrangian density in which this change is made to the matter fields will then be 
invariant under the extended or simultaneous gauge transformations 

of the first and  second kinds wherein ‘1 is called the gauge function. The Lagrangian 
density may then be written in the usual form with interaction term. In the free-field 
case, the variation of the Lagrangian density with respect to the potentials yields 
F+”,“ = 0, in which F”’ = A’,” -A”,*,  the latter equations reducing these equations to 
UA@ = x , ~  where x = Ap.g. In classical theories one may choose the Lorentz gauge 
condition ,y = 0, thus reducing Maxwell’s equations to OAF = 0, and  gauge invariance 
within the Lorentz gauge is governed by the equation UA = 0. 

Amongst other possible gauge conditions, the radiation (or Coulomb) gauge and  
the axial gauge are well known examples of non-covariant gauges. A less well known 
gauge than the Lorentz gauge which is relativistically covariant is the Poincark or 
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66 J R Ellis 

‘multipolar’ gauge condition (see, for example, Kobe 1982, 1983, Brittin et a1 1982, 
Cornish 1984). By choosing a gauge function of the form 

A(x)  = A@(z) dz, JRP 
where R is a reference point and P a field point (x),  and by choosing the path from 
R to P to be everywhere spacelike, Healy and others have shown how this gauge 
condition may be constructed (calling it the multipolar gauge; Healy 1978, 1979, 1980). 
In equation (1) the gauge for A@ is initially assumed to be arbitrary. This produces 
for A‘, the expression (in Healy’s notation): 

which describes the PoincarC gauge (PG).  (Hereafter we use the symbol 9 on the 
four-potential to denote that it is calculated in the PG.) This generalises to finite paths 
and a finite reference point an old result of DeWitt (1962) (see also Sachs 1948, 
Mandelstam 1962, Belinfante 1962, LCvy 1964, Rohrlich and Strocci 1965) again for 
spacelike curves: 

wherein, in the more complete notation of DeWitt, the functions zF(x, 6) represent 
four arbitrary single-valued differentiable functions of the spacetime coordinates x p  
and a parameter 6, which are defined for all xp  and for all values of 6 in the interval 
-a< 6s 0, and satisfy the boundary conditions zF(x, 0) = xp, lime+-= z”(x, 6) = 
spatial infinity. The reference point taken at spatial infinity simplifies the gauge since 
the potentials and fields are assumed to vanish there. Healy’s gauge function (1) is 
the function 

A(x)=  A’(z)dz,dt I: a t  
in DeWitt’s notation, in which Z@(X, 6) satisfies the conditions z@(x, 1) = xP, zp(x, 0) = 
coordinates of the reference point R, rather than those of DeWitt, this then being a 
straightforward generalisation of the infinite-path case to finite paths. The PG rep- 
resentation (2) with finite reference point is then 

again in DeWitt’s notation. 
It is easily shown that the following is an identity for A’”(x) in any gauge: 

This identity holds for any path (which may be timelike). Each term of the identity 
depends upon the path, its variation to adjacent points (because of the derivatives of 
the z) and the endpoints. When the gradient term on the right-hand side is omitted 
and the integral is taken to be the potential, this sets the PG so to speak. Besides being 
manifestly Lorentz covariant, one other advantage of the PG is that the potentials (and 
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the charge fields in the quantum mechanical description) may be formulated in terms 
of field strengths only, but this touches on a thorny problem as to whether A’ is itself 
to be regarded as a physical field in quantum mechanics (see, for example, Aharonov 
and Bohm (1959, 1961, 1962, 1963), but more particularly Philippidis et al (1982); see 
also Boyer (1972), Yang (1976), Nieto (1984); for a review paper see Erlichson (1970)). 
A disadvantage that some might see is in having the fields arise non-locally in the line 
integrals. If the integration path to the field point x is changed to another (spacelike) 
path to x, Healy and others have shown that this induces a gauge transformation on 
the potentials (i.e. within the PG). In other work in which the gauge is called the PG 

it has been found that the formalism is related in the straight-path case essentially to 
three well known classical vector analysis results (the first due to Liebmann 1908, and 
the others due to Brand 1950). This increases our perspective of the PG. 

It may be shown that by choosing timelike curvilinear (world-line) path integrals, 
rather than spacelike ones and by using a proper-time formalism (which is justified in 
a relativistic description), the PG reduces in most instances to the Lorentz gauge 
condition provided one chooses a linear dependence on the endpoint in the functions 
z’I(x, 6 )  (which are in any case too wide): 

z’1(x, 6)=x’+2’(6). (6) 

The sole criterion for distinguishing whether the Lorentz gauge condition is, in fact, 
satisfied is then governed by insisting that the integration paths do not cross current 
distributions for F p ” .  We shall continue this work later. 

Alongside this we note the work which has been carried out on the Aharonov-Bohm 
( A B )  effect which this formalism may be used to interpret. We refer, for example, to 
the articles by Roy (1980) and by Zuchelli (1984). The exemplary paper by Wu and 
Yang (1975) is the generally accepted explanation of the A B  effect, but this paper did 
not touch on the application of the PG (or multipolar gauge) to this problem. The 
paper by Roy, which paradoxically set out to disprove the non-locality of the fields 
arising in the A B  effect on the basis, effectively, of the use of the equations in the PG, 
has been generally criticised. The criticisms made by Zuchelli of Roy’s paper, however, 
were not constructive, leaving some doubt, even, that the use of the equations in the 
PG may be relevant. One of the criticisms of Roy’s work by Zuchelli was that the paths 
z’(x, 6 )  had to come from spatial infinity and so would have to cross the return path 
of the flux (omitted in Roy’s treatment) and this flux could be arranged to be inside 
a sphere, the whole experiment being performed in its interior. However, given that 
the criticism applies strictly to Roy’s statements, the work may be generalised to cover 
the case where the paths z’(x, 6 )  cross current distributions for Fp“ and these may 
be so arranged to have a finite starting reference point rather than an infinite one. The 
second criticism that Zuchelli made was more substantial, but again had to do with 
the strict statement made by Roy. Taking the situation in its wider application it is 
unusual that neither Zuchelli nor Roy spotted that a change of path (along which the 
potential vanished) actually implied a change of gauge at the instant the current 
distributions are crossed, so that a valid explanation of the A B  effect is possible. 

As an example of the PG, we shall apply the gauge (in section 2) to the AB solenoid 
and (in section 3), more substantially, to the construction of the potentials for a Dirac 
magnetic monopole situated at the origin using parallel transport with an infinite 
reference point referred to above (i.e. equation (6)), which would be expected to 
produce a Lorentz gauge potential, but we do this for spacelike paths rather than 
timelike ones. Specifically, we choose two infinite reference points at z = f m  and 
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reproduce the ‘overlapping’ potentials for the monopole given by Wu and Yang in 
their explanation of how spurious singularities (i.e. not arising from the position of 
the monopole itself) may be eliminated by simultaneous gauge transformations. We 
explain how the singularities arise as ‘shadows’ of the monopole in the treatment using 
these families of paths and in section 4 we indicate a method for finding the PG 

potentials in the shadow region. 

2. The Aharonov-Bohm solenoid in the Poincare gauge with finite or infinite reference 
point 

Potentials for the solenoid may be approximated using cylindrical polar coordinates 
either by 

f p = O  A, = O  AZ = O  

L + z  ) A , = - (  47rp [ ( L - z ) 2 + p - ]  2 1 / 2 +  [ ( L + z ) 2 + p 2 ] ” ’  
CP L - z  

or by 

& = O  A,=O 
CP 

A,  =- 
2 T P  

A, = O .  

( 7 )  

The potentials in ( 7 )  are the potentials for a solenoid of zero radius extending from 
z = - L  to z = L (from the addition of infinitesimal circular current elements; Roy 1980) 
and are the same as the potentials for a ‘line’ magnet of length 2 L  lying along the z 
axis. Potentials (8) are the limiting potentials arising from (7)  in the limit L + w .  In 
either case there is a line singularity in the vector potential (along the z axis) around 
which at infinitesimal distances in the x O y  plane $ A d r  = CP, but whereas in (8) there 
is no return flux, in (7)  there is one, revealed by $ A dr, taken round a circle of radius 
p in the x O y  plane, reducing in value from CP to 0, as p increases from 0 to CO. Thus 
we meet these singularities in the form of line singularities, the difficulties associated 
with which we shall try to remove from the PG. 

It is straightforward that (8), where the fields vanish outside the solenoid, satisfies 
identity ( 5 )  (extended to include the case of an infinite reference point if necessary) 
with the final term vanishing, provided the domain covered by the endpoint x does 
not include the endpoints reached by paths passing through the singularity. Thus the 
PG potential (the final term of ( 5 ) )  based on the specific family of paths z ” ( x ,  6) 
vanishes everywhere except in the ‘shadow’ region of the solenoid-i.e. in the region 
extending from the solenoid containing endpoints of paths z L L ( x ,  6) which have crossed 
the solenoid (this region is the time evolution of a semi-infinite surface). Since, in the 
domain considered, every point x is the endpoint of a unique member of the family 
and there is no other member of the family having this endpoint, we may imagine the 
family (or rather a family which we would normally consider) to be rather like a curved 
beam of light originating from a point source (R)?, so that the shadow region of the 
solenoid will indeed be the (time evolution of the) two-dimensional surface indicated. 

t This may not always be the case but the general conclusions remain: the elimination from z’(x, 5 )  = 
sli + qt’ + lu’ with s, t ,  U fixed, of the variables 5, q, 5 leaves one equation connecting the x, i.e. the shadow 
region will be a three-dimensional hypersurface. (s’ + qrli +{U’ represents the time evolution of the 
solenoid.) 
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For all points x on this surface the PG potential will diverge. However, provided a 
path zp(x, 6 )  is clear of the singularity (with x not in the shadow region) 

A+’(z) dz, = - ~ A d p  d d  = -~#4/2.ir 
A(x) = lRP(*’ 5: 

with 

A,& = ( 0 ,  0 ,  ~ # / 2 . i r p ,  0 )  =A,, 

Note that we are not allowed to write zero for the PG potentials on the shadow surface 
(SS,) itself arising from this family of paths (PI), but we may use another family of 
paths ( P 2 )  starting from the same reference point (using a different PG potential with 
a different shadow region) to obtain zero PG potentials for the new family of paths 
(see figure 1). We use a gauge transformation in going from the paths P,  to the paths 
P,, but for equations (8 ) ,  the fact that at x there is no difference between the PG 

potentials based upon the paths PI and upon the paths P2 is because the flux contained 
within the paths is a constant independent of x. Expressing this differently, for any x 
there will be two paths arriving there from R and as x is varied taking the paths with 
it the flux contained within the paths does not change. All of this derives from the 
subtraction of (5) for P, , from (5) for PI,  noting that A’” is single-valued over PIP2. 
Because a solenoid would have non-zero diameter, some return flux and non-constant 
current, this idealisation in which we assume that PI and P, conform to the two halves 
of the electron beam (as in any idealisation of the AB effect) could not be applied in 
practice; it may provide only the basis of a first approximation. The main point is 
that it takes a gauge transformation to go from the PG based upon PI to the PG based 
upon P 2 .  Thus the fringe-shift phenomenon of the A B  effect could be derived using 
the PG from the effects of the simultaneous gauge transformation (in which the 
electromagnetic transformation is the identity AI’’ = A?+ in the PG in the first approxima- 

tion). This gauge transformation taking one set of paths into another set (in this 
simplified picture concerning equation (8)) may be considered as the specialisation of 
the transformation which uses two reference points R,  and R2 with associated paths 
PI and P2 (figure 2 ) .  The gauge function for this transformation is the sum of the flux 
calculated over R , R , x  and the line integral A” dx, taken along the arbitrary curve 
R l R 2 .  In addition to using these possibilities with the PG it is also possible to use 
moving reference points (Healy 1980). 

Using the PG to compare the potentials via paths on either side of the solenoid in 
this way, using different families, should be done, more precisely, for the paths PI ,  P2 
in spacetime, where R is in the past relative to the endpoint; but since the situation 

’p a 

Figure 1. Changing the family of paths P ,  to the family of paths PI using the same reference 
point. S is the singularity (giving rise to shadow surfaces S S ,  and S S , ) .  
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Figure 2. Changing the family of paths P,  to the family of paths Pt using a different 
reference point. 

here is static we have omitted this. Instead of choosing different families on either 
side of the singularity to explore the potential, an alternative method is to use the 
same family of paths (for example a family of parallel straight lines from an infinite 
reference point). We are not then comparing potentials at the same point x but are 
using the same family to compare potentials at  adjacent points on either side of the 
shadow region. This method illustrates the PG when there are line singularities. Within 
the same family of paths (figure 3) we have P, and Pz on either side of the singularity 
going to adjacent points x, x’. If x ’ = x + d X  where dX is arbitrary but fixed as x 
varies, and the infinitesimal curvilinear triangular-shaped surface bounded by PI and 
Pz intersects the singularity at S, we may take the portion (from R to S) of the unique 
path of the family which goes from R to the shadow surface on xx’ and also use this 
as the return path from S, after surrounding S with an infinitesimal closed curve y. 
Then from ( 5 ) ,  calling the complete (closed anticlockwise) circuit enclosing the non- 
singular region for the potentials a& we have 

AP“(x) - AY (x‘) = -aY( 4, A ” (  Z )  dz, + J y  A”(z)  dz, - A”(x)  dX,, + A ~ ( x )  - A ~ ( x ’ ) .  
D 9 ) 
This equation reduces to 

A P ( x ) - T ( ~ ‘ ) = - F Y L Y ( ~ )  dX,,-dP A”(z)dz,-aP ~ F ” ’ ( w )  due’ 
9 fy I, 

where the line integral represents the singular flux (at S )  and the double integral 
represents the return flux. This equation compares the potentials at x and x’ in the 
PG based on the same family of paths. Applying this equation to the simple case of 

X 

Figure 3. Comparing the potentials (using the same family of paths) at the events x, x’ on 
either side of the shadow surface originating from S. 
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a set of parallel paths z”(x, 6 )  = (c t ,  x + 6, y ,  z ) ,  where 6 varies from -a to 0, and the 
solenoid is as described by equations (8 ) ,  we may take the interval XI-x as finite in 
this instance; then, since there is no return flux 

c 

Aw(x) -A”(x’)  = ! F w u ( z )  dz, - ! F””(z )  dz, 
PI P? 9 P 

= -d”{AO( - y ) }  

= (O,O,  - A ~ ( Y ) ,  0) 

in the vicinity of the shadow surface, where Q, = - h / c  is the constant singular flux 
and B ( y ) ,  S ( y )  are the unit step and Dirac delta functions in y.  Since the PG potentials 
are zero everywhere except on the shadow surface y=O,  where they have the value 
(O,O,  -A6(y) ,  0), all of these values allow us to have $ A”(z) dz,, taken round the 

semi-infinite trapezoidal circuit, equal to A when the singularity is enclosed, or zero 
when it is not. Assuming that the example may be generalised, we conclude that the 
PG may be used in the same way as other gauge potentials in the minimal-coupling 
formula if required. 

?P 

3. The Dirac magnetic monopole in the Poincare gauge with infinite reference point 

The ‘overlapping’ Lorentz gauge potentials for the monopole of strength g situated at 
the origin, r = 0, for which B( r )  = g r /  r3 ,  are, using spherical polar coordinates: 

4 = 0  A, = A, = 0 (1 -cos 6 )  g A, =- 
r sin 6 (9) 

( b = O  A,=A,=O A,=--?-(l+cos 6 ) .  (10) r sin 6 

The potentials (9) are singular along the negative z axis, and (10) are singular along 
the positive z axis. However, a (simultaneous) gauge transformation may be employed 
taking (9) into (10) (for the respective regions which exclude the singularities, i.e. for 
the overlapping region 4i-r - 6 < 6 < 47 + 6, where 0 < 6 s ii-r), and the whole of space- 
time minus the position of the monopole may be covered by one or other of the 
potentials (91, ( lo),  either potential being suitable in the singular-free region associated 
with it to describe the fields because their curls are equal to the magnetic field there. 
Assuming that the phase factor in the transformation of the wavefunction, 
exp[(2ige/h)4], is single valued leads to the Dirac quantisation condition for the 
monopole (Wu and Yang 1975), but we are interested in the electromagnetic component 
here. 

Consider the monopole to be ‘illuminated’ by parallel straight paths having a 
reference point, R, at z = -00, i.e. consider paths that are given by 

-co<.gso z” ( X, 6) = x” + ( k w  

where k” = (0, 0, 0 , l ) .  Since az“/ax” = a;, we have for the PG potential, 
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provided we exclude from the domain covered by the event x the shadow region of 
the monopole (i.e. the hypersurface x = y = 0, z 2 0, all t ) .  Thus 

c A (x)  = 1" ( F3 ' (  z), -F2'( z), 0) d t .  
- X  p ) = o  :P 

Using the complex variables 

$f ( X I  = +x) + i A, ( x )  B ( z )  = B,(z)+iB,(z) % = x + i y  
.p 

where x and y in the last equation are coordinates, we have 

ig exp(iq5) (1 +cos 6)  = -  
r sin 6 * 

Hence we have shown that the potentials A'"(x) in this case are the potentials ( lo),  

and it is not accidental that the line of singularities along the positive z axis corresponds 
to the shadow region of the monopole. Equally, it may be shown, by taking R at 
z = CO, that the other potentials (9) result, in that case the shadow region is along the 
negative z axis. 

2? 

4. Integrating 'through' a singularity to find the PG potentials in the shadow region 

In the calculation for the PG potentials of the monopole we excluded from the domain 
covered by x the shadow region of the monopole. If we follow through the above 
calculation with x in the shadow region we obtain zero for the PG potentials in the 
exact direction of the z axis (excluding the monopole's position) but this depends on 
a subtraction of infinities where the path crosses the monopole. A more correct method 
for obtaining the PG potentials in the shadow region would be to calculate the potentials 
in the shadow region of a monopole of finite radius E in which paths are allowed to 
pass through the monopole (in this, two four-potentials would be required), and then 
to let E decrease to zero. The calculation for the PG potential in the shadow region 
of the solenoid (see section 2) by this method is simpler and more interesting. We 
shall use it to illustrate the method. 

Taking a solenoid of finite radius E with its axis lying along the z axis for which 
B, = @/ m2 (@ constant) within the solenoid ( B ,  = 0 outside), we have in the notation 
for the monopole problem after changing axis notation: 

r o  
d ( x )  = -i J 93(z(x, 6 ) )  d t  where W ( z ) =  B.y(z)+iBz(z) 

-X B 
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i.e. A,(x) = A,(x) = 0 and 
b ,P 

when the event x is exterior to the solenoid (note that the x and y on the right-hand 
side of the last equation are coordinates). For a solenoid of zero radius the PG potentials 
everywhere (excluding the position of the solenoid itself) are thus given by 

$ = O  

and we may confirm that the above limit is an alternative representation of the Dirac 
delta function 6 ( y )  as follows: 

= 1. 

The PG potentials for the solenoid in the limiting situation are thus 

as previously calculated in section 2 .  

5. Conclusion 

The difficulties associated with line- and point-type singularities may be removed from 
the PG, contrary to previous suggestions. We have shown that the PG may be used to 
describe the AB solenoid, and we have also applied the PG to produce the well known 
‘overlapping’ potentials of the monopole. The methods we have given for calculating 
the PG potentials in the shadow region should be applicable to the monopole, and it 
should be possible to relate the gauge transformation existing between the ‘overlapping’ 
potentials to that of the scheme described by figure 2 in which the families originate 
from two different reference points R I ,  R2 (these would be taken at z = *CO). It would 
be necessary to have an explicit calculation for the two shadow regions before attempt- 
ing this calculation. We believe that the PG may be used in the minimal-coupling 
substitution in the presence of singularities, and we are surprised to have found that 
the gauge does not appear to be particularly well known. 
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